Introduction to Artificial Neural Networks - Part 1 (http://www.theprojectspot.com/)
ARTIFICIAL NEURAL NETWORK

Introduction

Computers are great at solving algorithmic and math problems, but often the world can't easily
be defined with a mathematical algorithm. Facial recognition and language processing are a
couple of examples of problems that can't easily be quantified into an algorithm, however these
tasks are trivial to humans. The key to Artificial Neural Networks is that their design enables
them to process information in a similar way to our own biological brains, by drawing inspiration
from how our own nervous system functions. This makes them useful tools for solving problems

like facial recognition, which our biological brains can do easily.

How do they work?

First lets take a look at what a biological neuron looks like.

Boutons

Dendrites

N\

Nucleus

Our brains use extremely large interconnected networks of neurons to process information and
model the world we live in. Electrical inputs are passed through this network of neurons which
result in an output being produced. In the case of a biological brain this could result in contracting
a muscle or signaling your sweat glands to produce sweat. A neuron collects inputs using a
structure called dendrites, the neuron effectively sums all of these inputs from the dendrites and

if the resulting value is greater than it's firing threshold, the neuron fires. When the neuron fires


http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7

it sends an electrical impulse through the neuron's axon to it's boutons. These boutons can then
be networked to thousands of other neurons via connections called synapses. There are about one
hundred billion (100,000,000,000) neurons inside the human brain each with about one thousand
synaptic connections. It's effectively the way in which these synapses are wired that give our

brains the ability to process information the way they do.

Modeling Artificial Neurons
Acrtificial neuron models are at their core simplified models based on biological neurons. This
allows them to capture the essence of how a biological neuron functions. We usually refer to these

artificial neurons as 'perceptrons’. So now lets take a look at what a perceptron looks like.

Inputs — f |
Output
|
Activation
Function

As shown in the diagram above a typical perceptron will have many inputs and these inputs are
all individually weighted. The perceptron weights can either amplify or deamplify the original
input signal. For example, if the input is 1 and the input's weight is 0.2 the input will be decreased
to 0.2. These weighted signals are then added together and passed into the activation function.
The activation function is used to convert the input into a more useful output. There are many
different types of activation function but one of the simplest would be step function. A step
function will typically output a 1 if the input is higher than a certain threshold, otherwise it's

output will be 0.



Here's an example of how this might work:
Input 1 (x1) =0.6
Input 2 (x2) =1.0

Weight 1 (w1) = 0.5
Weight 2 (w2) = 0.8

Threshold = 1.0

First we multiple the inputs by their weights and sum them:
Xiwi + Xowo = (0.6 X 0.5) + (1 x 0.8) =1.1

Now we compare our input total to the perceptron's activation threshold. In this example the

total input (1.1) is higher than the activation threshold (1.0) so the neuron would fire.

Implementing Artificial Neural Networks

So now you're probably wondering what an artificial neural network looks like and how it uses
these artificial neurons to process information. In this tutorial we're going to be looking at
feedforward networks and how their design links our perceptron together creating a functioning
artificial neural network. Before we begin lets take a look at what a basic feedforward network

looks like:



Output Layer

t

Hidden Layer

t

Input Layer

Each input from the input layer is fed up to each node in the hidden layer, and from there to each
node on the output layer. We should note that there can be any number of nodes per layer and
there are usually multiple hidden layers to pass through before ultimately reaching the output
layer. Choosing the right number of nodes and layers is important later on when optimizing the
neural network to work well a given problem. As you can probably tell from the diagram, it's
called a feedforward network because of how the signals are passed through the layers of the
neural network in a single direction. These aren't the only type of neural network though. There

are also feedback networks where its architecture allows signals to travel in both directions.

Linear separability
To explain why we usually require a hidden layer to solve our problem, take a look at the

following examples:



OR Function XOR Function

'@ (<] '®
N N
Input 1 nw\
@

57
@
" 1

L @ 0
Input2 N 1 Input2

Notice how the OR function can be separated on the graph with a single straight line, this means
the function is “linearly separable” and can be modelled within our neural network without
implementing a hidden layer, for example, the OR function can be modeled with a single

perceptron like this:

Output Layer

t

Input Layer

However to model the XOR function we need to use an extra layer:



’ Output Layer
w= -2 w=] t

Hidden Layer

w=0.5 w=] t
o]
. Input Layer

t

We call this type of neural network a 'multi-layer perceptron'. In almost every case you should

only ever need to use one or two hidden layers, however it make take more experimentation to
find the optimal amount of nodes for the hidden layer(s).

Implementing Supervised Learning

As mentioned earlier, supervised learning is a technique that uses a set of input-output pairs to
train the network. The idea to provide the network with examples of inputs and outputs then to
let it find a function that can correctly map the data we provided to a correct output. If the network
has been trained with a good range of training data when the network has finished learning we
should even be able to give it a new, unseen input and the network should be able to map it

correctly to an output.

There are many different supervised learning algorithms we could use but the most popular, and
the one we will be looking at in more detail is backpropagation. Before we look at why
backpropagation is needed to train multi-layered networks, let's first look at how we can train

single-layer networks, or as they're otherwise known, perceptron.



The Perceptron Learning rule

The perceptron learning rule works by finding out what went wrong in the network and making
slight corrections to hopefully prevent the same errors happening again. Here's how it works...
First we take the network's actual output and compare it to the target output in our training set. If
the network's actual output and target output don't match we know something went wrong and
we can update the weights based on the amount of error. Let’s run through the algorithm step by

step to understand how exactly it works.

First, we need to calculate the perceptron's output for each output node. As you should remember

from the previous tutorial we can do this by:

output = f{ inputl * weightl + input * weight2 + ... )

- or -

0 = f{%‘xiwfj

Now we have the actual output we can compare it to the target output to find the error:

error = farget oniput - oniput

Now we want to use the perceptron's error to adjust the weights.

weight change = learning rate * error * input

dw,=rEx

We want to ensure only small changes are made to the weights on each iteration, so to do this
we apply a small learning rate (r). If the learning rate is too high the perceptron can jump too far

and miss the solution, if it's too low, it can take an unreasonably long time to train.



This gives us a final weight update equation of:

weight change = learning rate x (target output - actual output) x input
= Or =

Awi=r (t-0) X

Here's an example of how this would work with the AND function...

0
t
/>=1)
\ =
w =03 w=03

H B
t t

1 1

Learning rate = 0.1
Expected output =1
Actual output = 0

Error=1

Weight Update:
wWi=rEx+w;

wi=01x1x1+w,

W, =01x1x1+w,

New Weights:
Wi = 04
Wy = 0.4



Learning rate = 0.1
Expected output =1
Actual output =0

Error=1

Weight Update:
wWi=rEx+w
wi=01x1x1+w,

W, =0.1x1x1+w,

New Weights:
wi; =05
Wy = 0.5



Learning rate = 0.1
Expected output =1
Actual output = 1

Error=0

No error,

training complete.



